# Main Tensor Formats¶

Three of the most popular tensor decompositions are supported in tntorch:

Those formats are all represented using $$N$$ tensor cores (one per tensor dimension, used for CP/TT) and, optionally, up to $$N$$ factor matrices (needed for Tucker).

In an $$N$$-D tensor of shape $$I_1 \times \dots \times I_N$$, each $$n$$-th core can come in four flavors:

• $$R^{\mathrm{TT}}_n \times I_n \times R^{\mathrm{TT}}_{n+1}$$: a TT core.
• $$R^{\mathrm{TT}}_n \times S_n^{\mathrm{Tucker}} \times R^{\mathrm{TT}}_{n+1}$$: a TT-Tucker core, accompanied by an $$I_n \times S_n^{\mathrm{Tucker}}$$ factor matrix.
• $$I_n \times R^{\mathrm{CP}}_n$$: a CP core. Conceptually, it works as if it were a 3D TT core of shape $$R^{\mathrm{CP}}_n \times I_n \times R^{\mathrm{CP}}_n$$ whose slices along the 2nd mode are all diagonal matrices.
• $$S_n^{\mathrm{Tucker}} \times R^{\mathrm{CP}}_n$$: a CP-Tucker core, accompanied by an $$I_n \times S_n^{\mathrm{Tucker}}$$ factor matrix. Conceptually, it works as a 3D TT-Tucker core.

One tensor network can combine cores of different kinds. So all in all one may have TT, TT-Tucker, Tucker, CP, TT-CP, CP-Tucker, and TT-CP-Tucker tensors. We will show examples of all.

(see this notebook <decompositions.ipynb>__ to decompose full tensors into those main formats)

(see this notebook <other_formats.ipynb>__ for other structured and custom decompositions)

## TT¶

Tensor train cores are represented in parentheses ( ):

[1]:

import tntorch as tn

tn.rand([32]*5, ranks_tt=5)

[1]:

5D TT tensor:

32  32  32  32  32
|   |   |   |   |
(0) (1) (2) (3) (4)
/ \ / \ / \ / \ / \
1   5   5   5   5   1


## TT-Tucker¶

In this format, TT cores are compressed along their spatial dimension (2nd mode) using an accompanying Tucker factor. This was considered e.g. in the original TT paper.

[2]:

tn.rand([32]*5, ranks_tt=5, ranks_tucker=6)

[2]:

5D TT-Tucker tensor:

32  32  32  32  32
|   |   |   |   |
6   6   6   6   6
(0) (1) (2) (3) (4)
/ \ / \ / \ / \ / \
1   5   5   5   5   1


Here is an example where only some cores have Tucker factors:

[3]:

tn.rand([32]*5, ranks_tt=5, ranks_tucker=[None, 6, None, None, 7])

[3]:

5D TT-Tucker tensor:

32          32
32   |  32  32   |
|   6   |   |   7
(0) (1) (2) (3) (4)
/ \ / \ / \ / \ / \
1   5   5   5   5   1


Note: if you want to leave some factors fixed during gradient descent, simply set them to some PyTorch tensor that has requires_grad=False.

## Tucker¶

“Pure” Tucker is technically speaking not supported, but is equivalent to a TT-Tucker tensor with full TT-ranks. The minimal necessary ranks are automatically computed and set up for you:

[4]:

tn.rand([32]*5, ranks_tucker=3)  # Actually a TT-Tucker network, but just as expressive as a pure Tucker decomposition

[4]:

5D TT-Tucker tensor:

32  32  32  32  32
|   |   |   |   |
3   3   3   3   3
(0) (1) (2) (3) (4)
/ \ / \ / \ / \ / \
1   3   9   9   3   1


In other words, all $$32^5$$ tensors of Tucker rank $$3$$ can be represented by a tensor that has the shape shown above, and vice versa.

## CP¶

CP factors are shown as cores in brackets < >:

[5]:

tn.rand([32]*5, ranks_cp=4)

[5]:

5D CP tensor:

32  32  32  32  32
|   |   |   |   |
<0> <1> <2> <3> <4>
/ \ / \ / \ / \ / \
4   4   4   4   4   4


Even though those factors work conceptually as 3D cores in a tensor train (every CP tensor is a particular case of the TT format), they are stored in 2D as in a standard CP decomposition. In this case all cores have shape $$32 \times 4$$.

## TT-CP¶

TT and CP cores can be combined by specifying lists of ranks for each format. You should provide $$N-1$$ TT ranks and $$N$$ CP ranks and use None so that they do not collide anywhere. Also note that consecutive CP ranks must coincide. Here is a tensor with 3 TT cores and 2 CP cores:

[6]:

tn.rand([32]*5, ranks_tt=[2, 3, None, None], ranks_cp=[None, None, None, 4, 4])

[6]:

5D TT-CP tensor:

32  32  32  32  32
|   |   |   |   |
(0) (1) (2) <3> <4>
/ \ / \ / \ / \ / \
1   2   3   4   4   4


Here is another example with 2 TT cores and 3 CP cores:

[7]:

tn.rand([32]*5, ranks_tt=[None, 2, None, None], ranks_cp=[4, None, None, 5, 5])

[7]:

5D TT-CP tensor:

32  32  32  32  32
|   |   |   |   |
<0> (1) (2) <3> <4>
/ \ / \ / \ / \ / \
4   4   2   5   5   5


## CP-Tucker¶

Similarly to TT-Tucker, this model restricts the columns along CP factors to live in a low-dimensional subspace. It is also known as a canonical decomposition with linear constraints (*CANDELINC*). Compressing a Tucker core via CP leads to an equivalent format.

[8]:

tn.rand([32]*5, ranks_cp=2, ranks_tucker=4)

[8]:

5D CP-Tucker tensor:

32  32  32  32  32
|   |   |   |   |
4   4   4   4   4
<0> <1> <2> <3> <4>
/ \ / \ / \ / \ / \
2   2   2   2   2   2


## TT-CP-Tucker¶

Finally, we can combine all sorts of cores to get a hybrid of all 3 models:

[9]:

tn.rand([32]*5, ranks_tt=[2, 3, None, None], ranks_cp=[None, None, None, 10, 10], ranks_tucker=[5, None, 5, 5, None])

[9]:

5D TT-CP-Tucker tensor:

32      32  32
|  32   |   |  32
5   |   5   5   |
(0) (1) (2) <3> <4>
/ \ / \ / \ / \ / \
1   2   3   10  10  10